63 research outputs found

    Dielectric and Dilatometric Studies of Glass Transitions in Thin Polymer Films

    Full text link
    Dielectric relaxation and thermal expansion spectroscopy were made for thin polystyrene films in order to measure the temperature TαT_{\alpha} corresponding to the peak in the loss component of susceptibility due to the α\alpha-process and the α\alpha-relaxation time τ\tau as functions of film thickness dd. While the glass transition temperature TgT_{\rm g} decreases with decreasing film thickness, TαT_{\alpha} and τ\tau were found to remain almost constant for d>dcd>d_{\rm c} and decrease drastically for d<dcd<d_{\rm c} for high temperatures. Here, dcd_{\rm c} is a critical thickness. Near the glass transition temperature, the thickness dependence of TαT_{\alpha} and τ\tau is more prominent. The relation between the fragility index and non-exponentiallity is discussed for thin films of polystyrene.Comment: 4 pages, 5 figure

    Aging phenomena in polystyrene thin films

    Full text link
    The aging behavior is investigated for thin films of atactic polystyrene through measurements of complex electric capacitance. During isothermal aging process the real part of the electric capacitance increases with aging time, while the imaginary part decreases with aging time. This result suggests that the aging time dependence of the real and imaginary parts are mainly associated with change in thickness and dielectric permittivity, respectively. In thin films, the thickness depends on thermal history of aging even above the glass transition. Memory and `rejuvenation' effects are also observed in the thin films.Comment: 4 pages, 2 figure

    Fracture energy of gels

    Full text link
    To clarify effects of crack speed and cross-link density on fracture energy of acrylamide gels, we evaluated the roughness of the fracture surface and measured the fracture energy taking into account the roughness. The fracture energy increases linearly with crack speed VV in a fast crack speed region, and the increasing rate of fracture energy with VV decreases with increasing cross link density in the gels. In a slow crack speed region the fracture energy depends on crack speed more strongly than in the fast crack speed region. This indicates that a qualitative change exists in fracture process of the gels.Comment: 7 pages, 8 figures. Some errors in the first version have been correcte

    Glassy dynamics in thin films of polystyrene

    Full text link
    Glassy dynamics was investigated for thin films of atactic polystyrene by complex electric capacitance measurements using dielectric relaxation spectroscopy. During the isothermal aging process the real part of the electric capacitance increased with time, whereas the imaginary part decreased with time. It follows that the aging time dependences of real and imaginary parts of the electric capacitance were primarily associated with change in volume (film thickness) and dielectric permittivity, respectively. Further, dielectric permittivity showed memory and rejuvenation effects in a similar manner to those observed for poly(methyl methacrylate) thin films. On the other hand, volume did not show a strong rejuvenation effect.Comment: 7 pages, 7 figures. Phys. Rev. E (in press

    Glass transition and alpha-relaxation dynamics of thin films of labeled polystyrene

    Full text link
    The glass transition temperature and relaxation dynamics of the segmental motions of thin films of polystyrene labeled with a dye, 4-[N-ethyl-N-(hydroxyethyl)]amino-4-nitraozobenzene (Disperse Red 1, DR1) are investigated using dielectric measurements. The dielectric relaxation strength of the DR1-labeled polystyrene is approximately 65 times larger than that of the unlabeled polystyrene above the glass transition, while there is almost no difference between them below the glass transition. The glass transition temperature of the DR1-labeled polystyrene can be determined as a crossover temperature at which the temperature coefficient of the electric capacitance changes from the value of the glassy state to that of the liquid state. The glass transition temperature of the DR1-labeled polystyrene decreases with decreasing film thickness in a reasonably similar manner to that of the unlabeled polystyrene thin films. The dielectric relaxation spectrum of the DR1-labeled polystyrene is also investigated. As thickness decreases, the α\alpha-relaxation time becomes smaller and the distribution of the α\alpha-relaxation times becomes broader. These results show that thin films of DR1-labeled polystyrene are a suitable system for investigating confinement effects of the glass transition dynamics using dielectric relaxation spectroscopy.Comment: 10 pages, 11 figures, 2 Table

    Discretized Wiener-Khinchin theorem for Fourier-Laplace transformation: application to molecular simulations

    Full text link
    The Wiener-Khinchin theorem for the Fourier-Laplace transformation (WKT-FLT) provides a robust method to calculate numerically single-side Fourier transforms of arbitrary autocorrelation functions from molecular simulations. However, the existing WKT-FLT equation produces two artifacts in the output of the frequency-domain relaxation function. In addition, these artifacts are more apparent in the frequency-domain response function converted from the relaxation function. We find the sources of these artifacts that are associated with the discretization of the WKT-FLT equation. Taking these sources into account, we derive the new discretized WKT-FLT equations designated for both the frequency-domain relaxation and response functions with the artifacts removed. The use of the discretized WKT-FLT equations is illustrated by a flow chart of an on-the-fly algorithm. We also give application examples of the discretized WKT-FLT equations for computing dynamic structure factor and wave-vector-dependent dynamic susceptibility from molecular simulations

    History Memorized and Recalled upon Glass Transition

    Full text link
    The memory effect upon glassification is studied in the glass to rubber transition of vulcanized rubber with the strain as a controlling parameter. A phenomenological model is proposed taking the history of the temperature and the strain into account, by which the experimental results are interpreted. The data and the model demonstrate that the glassy state memorizes the time-course of strain upon glassification, not as a single parameter but as the history itself. The data also show that the effect of irreversible deformation in the glassy state is beyond the scope of the present model. Authors' remark: The title of the paper in the accepted version is above. The title appeared in PRL is the one changed by a Senior Assistant Editor after acceptance of the paper. The recovery of the title was rejected in the correction process.Comment: 4 pages, 4 figure

    Slow dynamics near glass transitions in thin polymer films

    Get PDF
    The α\alpha-process (segmental motion) of thin polystyrene films supported on glass substrate has been investigated in a wider frequency range from 103^{-3} Hz to 104^4 Hz using dielectric relaxation spectroscopy and thermal expansion spectroscopy. The relaxation rate of the α\alpha-process increases with decreasing film thickness at a given temperature above the glass transition. This increase in the relaxation rate with decreasing film thickness is much more enhanced near the glass transition temperature. The glass transition temperature determined as the temperature at which the relaxation time of the α\alpha-process becomes a macroscopic time scale shows a distinct molecular weight dependence. It is also found that the Vogel temperature has the thickness dependence, i.e., the Vogel temperature decreases with decreasing film thickness. The expansion coefficient of the free volume αf\alpha_f is extracted from the temperature dependence of the relaxation time within the free volume theory. The fragility index mm is also evaluated as a function of thickness. Both αf\alpha_f and mm are found to decrease with decreasing film thickness.Comment: 9 pages, 7 figures, and 2 table
    corecore